- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- + 分层抽样的概率
- 设计分层抽样过程
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
(1)求
的值及随机抽取一考生恰为优秀生的概率;
(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在
的概率.
分组 | 频数 | 频率 |
![]() | 5 | 0.05 |
![]() | ![]() | 0.20 |
![]() | 35 | ![]() |
![]() | 25 | 0.25 |
![]() | 15 | 0.15 |
合计 | 100 | 1.00 |
(1)求

(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在

某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.

(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.

(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.
双流中学校运动会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:
),身高在175
以上(包括175
)定义为“高个子”,身高在175
以 下(不包括175
)定义为“非高个子”.

(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?
(2)若从身高180
以上(包括180
)的志愿者中选出男、女各一人,求这两人身高相差5
以上的概率.






(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?
(2)若从身高180



某批零件共160个,其中一级品有48人,二级品有64个,三级品有32个,等外品有16个.从中抽取一个容量为20的样本.试简要叙述用简单随机抽样、系统抽样、分层抽样法进行抽样都是等可能抽样.
某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布图如图所示,下表是年龄的频率分布表.


(1)现要从年龄较小的第
组中用分层抽样的方法抽取6人,则年龄第
组人数分别是多少?
(2)在(1)的条件下,从这6中随机抽取2参加社区宣传交流活动,求恰有2人在第3组的概率.







(1)现要从年龄较小的第


(2)在(1)的条件下,从这6中随机抽取2参加社区宣传交流活动,求恰有2人在第3组的概率.
某高中在校学生2 000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:
年级 项目 | 高一年级 | 高二年级 | 高三年级 |
跑步 | a | b | c |
跳绳 | x | y | z |
其中a∶b∶c=2∶3∶5,全校参与跳绳的人数占总人数的. 为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?
某市一批养殖专业户投资石金钱龟养殖业,行业协会为了了解市场行情,对石金钱龟幼苖销售价格进行调查。2017年12月随机抽取500户销售石金钱龟幼苖的平均价格,得到如下不完整的频率分布统计表:

(Ⅰ)完成统计表。
(Ⅱ)为了向石金钱龟养殖户提供更好的幼苖销售参考,协会决定2018年1月份从第1,3,5组中用分层抽样方法取出7户出售幼龟价格跟踪调查,求第1,3,5组1月份接受调查的户数。
(Ⅲ)在(Ⅱ)的前提下,协会决定从选出的7个养殖户中随机抽取3户总结销售经验.为了鼓励养殖户支持调查工作,协会决定:发给第1组被抽到的每户幸运奖奖金210元,第3组被抽到的每户幸运奖奖金70元,第5组被抽到的每户幸运奖奖金140元.记发出的幸运奖总奖金额为
元,求
的分布列和数学期望
.

(Ⅰ)完成统计表。
(Ⅱ)为了向石金钱龟养殖户提供更好的幼苖销售参考,协会决定2018年1月份从第1,3,5组中用分层抽样方法取出7户出售幼龟价格跟踪调查,求第1,3,5组1月份接受调查的户数。
(Ⅲ)在(Ⅱ)的前提下,协会决定从选出的7个养殖户中随机抽取3户总结销售经验.为了鼓励养殖户支持调查工作,协会决定:发给第1组被抽到的每户幸运奖奖金210元,第3组被抽到的每户幸运奖奖金70元,第5组被抽到的每户幸运奖奖金140元.记发出的幸运奖总奖金额为



在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.
①采用随机抽样法,将零件编号为00,01,…,99,抽签取出20个;
②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;
③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个.从三级品中随机抽取10个,对于上述抽样方式,下面说法正确的是 ( )
A.不论哪一种抽样方法,这100个零件中每一个个体被抽到的概率都是![]() |
B.①②两种抽样方法中,这100个零件每一个个体被抽到的概率为![]() |
C.①③两种抽样方法中,这100个零件中每一个个体被抽到的概率为![]() |
D.采用不同的抽样方法,这100个零件中每一个个体被抽到的概率是不同的 |
某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成
列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:
.

(1)根据茎叶图中的数据完成

| 购买意愿强 | 购买意愿弱 | 合计 |
20~40岁 | | | |
大于40岁 | | | |
合计 | | | |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:


某社区为丰富居民节日活动,组织了“迎新春”象棋大赛,已知报名的选手情况统计如下表:
已知中年组女性选手人数是仅比老年组女性选手人数多2人,若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.
(1)求表格中的数据
;
(2)若从选出的中年组的选手中随机抽取两名进行比赛,求至少有一名女性选手的概率.
组别 | 男 | 女 | 总计 |
中年组 | ![]() | ![]() | 91 |
老年组 | 16 | ![]() | ![]() |
已知中年组女性选手人数是仅比老年组女性选手人数多2人,若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.
(1)求表格中的数据

(2)若从选出的中年组的选手中随机抽取两名进行比赛,求至少有一名女性选手的概率.