- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分层抽样的特征及适用条件
- + 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比
,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:
(1)从样本中70岁及以上老人中,采用分层抽样的方法抽取21人,进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:
①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴;
(a)百岁及以上老年人,每人每月发放345元的生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.

年龄段(岁) | ![]() | ![]() | ![]() | ![]() |
人数(人) | 125 | 75 | 25 | 5 |
(1)从样本中70岁及以上老人中,采用分层抽样的方法抽取21人,进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:
①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴;
(a)百岁及以上老年人,每人每月发放345元的生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.
某学校高三年级学生完成并提交的社科类课题论文有54篇,人文类课题论文60篇,其他论文39篇,为了了解该校学生论文完成的质量情况,若按分层抽样从该校的所有完成并提交的论文中抽取51篇进行审核,则抽取的社科类课题论文有_____ 篇.







| 收看 | 没收看 |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表说明,能否有

(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取


①问男、女学生各选取多少人?
②若从这



附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图:

(Ⅰ)若将购买金额不低于
元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取
人,求这
人中消费金额不低于
元的人数;
(Ⅱ)从(Ⅰ)中的
人中抽取
人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求
人中至少有
人购买金额不低于
元的概率;
(Ⅲ)为吸引顾客,该村特推出两种促销方案,
方案一:每满
元可立减
元;
方案二:金额超过
元但又不超过
元的部分打
折,金额超过
元但又不超过
元的部分打
折,金额超过
元的部分打
折.
若水果的价格为
元/千克,某游客要购买
千克,应该选择哪种方案.

(Ⅰ)若将购买金额不低于




(Ⅱ)从(Ⅰ)中的





(Ⅲ)为吸引顾客,该村特推出两种促销方案,
方案一:每满


方案二:金额超过








若水果的价格为


经调查,在某商场扫码支付的老年人、中年人、青年人的比例为
,用分层抽样的方法抽取了一个容量为
的样本进行调查,其中中年人人数为9,则
( )



A.30 | B.40 | C.60 | D.80 |
某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.按照分层抽样的方法抽取样本,则丙地区抽取的销售点比乙地区抽取的销售点多( )
A.5个 | B.8个 | C.10个 | D.12个 |
某工厂生产
、
、
三种不同型号的产品,其数量之比依次是
,现在用分层抽样的方法抽出样本容量为
的样本,样本中
型号产品有15件,那么
等于( )







A.50 | B.60 | C.70 | D.80 |



(1)试估计

(2)从









(3)再从






某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了
人,回答问题统计结果如图表所示.

(Ⅰ) 分别求出
的值;
(Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.


组号 | 分组 | 回答正确 的人数 | 回答正确的人数 占本组的概率 |
第1组 | ![]() | 5 | 0.5 |
第2组 | ![]() | ![]() | 0.9 |
第3组 | ![]() | 27 | ![]() |
第4组 | ![]() | ![]() | 0.36 |
第5组 | ![]() | 3 | ![]() |
(Ⅰ) 分别求出

(Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
为了调查教师对教育改革认识水平,现从某市年龄在
的教师队伍中随机选取100名教师,得到的频率分布直方图如图所示,若从年龄在
中用分层抽样的方法选取6名教师代表.

(1)求年龄在
中的教师代表人数;
(2)在这6名教师代表中随机选取2名教师,求在
中至少有一名教师被选中的概率.



(1)求年龄在

(2)在这6名教师代表中随机选取2名教师,求在
