- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求平面两点间的距离
- 由顶点坐标判断三角形的形状
- 由距离求点的坐标
- 用两点间的距离公式求函数最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
图象上不同两点
,
,
,
处的切线的斜率分别是
,
,规定
叫曲线
在点
与点
之间的“弯曲度”,给出以下命题:
(1)函数
图象上两点
、
的横坐标分别为1,2,则
;
(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
(3)设点
、
是抛物线,
上不同的两点,则
;
(4)设曲线
上不同两点
,
,
,
,且
,若
恒成立,则实数
的取值范围是
;
以上正确命题的序号为__(写出所有正确的)











(1)函数




(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
(3)设点




(4)设曲线









以上正确命题的序号为__(写出所有正确的)
如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).

(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.

(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.