- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 几何体三视图的概念及辨析
- 画几何体的三视图
- + 由三视图还原几何体
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题13分)
一个多面体的直观图和三视图如图所示,其中
,
分别是
,
的中点,
是
上的一动点.
(Ⅰ)求该几何体的体积与表面积;
(Ⅱ)求证:
⊥
;
(Ⅲ)当
时,在棱
上确定一点
,使得
//平面
,并给出证明.
一个多面体的直观图和三视图如图所示,其中






(Ⅰ)求该几何体的体积与表面积;
(Ⅱ)求证:


(Ⅲ)当






已知正三棱柱
的正(主)视图和侧(左)视图如图所示. 设
的中心分别是
,现将此三棱柱绕直线
旋转,射线
旋转所成的角为
弧度(
可以取到任意一个实数),对应的俯视图的面积为
,则函数
的最大值为 ;最小正周期为 .
说明:“三棱柱绕直线
旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,
旋转所成的角为正角,顺时针方向旋转时,
旋转所成的角为负角.









说明:“三棱柱绕直线



