- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 中心投影与平行投影
- + 三视图
- 几何体三视图的概念及辨析
- 画几何体的三视图
- 由三视图还原几何体
- 直观图
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥各个侧面中,最大的侧面面积为( )


A.2 | B.![]() | C.3 | D.4 |
已知某四棱锥的三视图如图所示,俯视图是边长为4的正方形,正视图和侧视图是边长为4的等边三角形,则该四棱锥的全面积为__________.

祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为
的平面截该几何体,则截面面积为 ( )



A.![]() | B.![]() | C.![]() | D.![]() |
某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )


A.![]() | B.![]() | C.4 | D.![]() |
北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如果棋、层坛之类,这种长方台形状的物体垛积.设隙积共
层,上底由
个物体组成,以下各层的长、宽一次各增加一个物体,最下层(即下底)由
个物体组成,沈括给出求隙积中物体总数的公式为
.已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为( )







A.83 | B.84 | C.85 | D.86 |