- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 不等式的性质
- 一元二次不等式
- 其他不等式
- + 线性规划
- 二元一次不等式(组)确定的可行域
- 简单的线性规划问题
- 非线性的可行域与目标函数
- 基本不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某出租车公司计划用450万元购买A型和B型两款汽车投入营运,购买总量不超过50辆,其中购买A型汽车需要13万元/辆,购买B型汽车需要8万元/辆,假设公司第一年A型汽车的纯利润为5万元/辆,B型汽车的纯利润为1.5万元/辆,为使该公司第一年纯利润最大,则需安排购买( )
A.8辆A型汽车,42辆B型汽车 | B.9辆A型汽车,41辆B型汽车 |
C.11辆A型汽车,39辆B型汽车 | D.10辆A型汽车,40辆B型汽车 |
某工艺品加工厂准备生产具有收藏价值的奥运会标志——“中国印·舞动的北京”和奥运会吉祥物——“福娃”.该厂所用的主要原料为A、B两种贵金属,已知生产一套奥运会标志需用原料A和原料B的量分别为4盒和3盒,生产一套奥运会吉祥物需用原料A和原料B的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该厂月初一次性购进原料A、B的量分别为200盒和300盒.问该厂生产奥运会标志和奥运会吉祥物各多少套才能使该厂月利润最大?最大利润为多少?