- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 不等式的性质
- 一元二次不等式
- 其他不等式
- + 线性规划
- 二元一次不等式(组)确定的可行域
- 简单的线性规划问题
- 非线性的可行域与目标函数
- 基本不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司生产甲,乙两种桶装产品,已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲,乙两种产品中,公司可获得的最大利润是( )
A.2200元 | B.2400元 | C.2600元 | D.2800元 |
设函数f(θ)=
sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为
,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:
,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

(1)若点P的坐标为

(2)若点P(x,y)为平面区域Ω:
