- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量基本定理
- + 平面向量的正交分解与坐标表示
- 正交分解的理解
- 用坐标表示平面向量
- 平面向量有关概念的坐标表示
- 平面向量线性运算的坐标表示
- 平面向量共线的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2014·本溪高一检测)已知A(2,-3),
=(3,-2),则点B和线段AB的中点M坐标分别为 ( )

A.B(5,-5),M(0,0) | B.B(5,-5),M![]() |
C.B![]() | D.B![]() ![]() |