- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理
- + 三角形面积公式
- 三角形面积公式及其应用
- 射影公式
- 余弦定理
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)如图,在平行四边形
中,点
是对角线
的延长线上一点,且
.记
,试用向量
表示
.

(2)若正方形ABCD边长为1,点P在线段AC上运动,求
的取值范围;

(3)设
,已知
,当
的面积最大时,求
的大小.








(2)若正方形ABCD边长为1,点P在线段AC上运动,求


(3)设




某地计划在一处海滩建造一个养殖场.

(1)如图1,射线OA,OB为海岸线,
,现用长度为1千米的围网PQ依托海岸线围成一个
的养殖场,问如何选取点P,Q,才能使养殖场
的面积最大,并求其最大面积.
(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为
;方案二:围成弓形CDE(点D,E在直线l上,C是优弧所在圆的圆心且
),其面积为
;试求出
的最大值和
(均精确到0.01平方千米),并指出哪一种设计方案更好.

(1)如图1,射线OA,OB为海岸线,



(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为




