- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理及辨析
- + 正弦定理解三角形
- 正弦定理判定三角形解的个数
- 正弦定理求外接圆半径
- 正弦定理边角互化的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《数学九章》中对“已知三角形三边长求三角形面积”的求法,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,具体求法是“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开平方得积”.若把这段文字写成公式,即
现有周长
的
满足
,用上面给出的公式求得
的面积为( )





A.![]() | B.![]() | C.![]() | D.![]() |
在如图所示的平面四边形ABCD中, AB=1, BC=
,△ACD为等腰直角三角形,且∠ACD=90°,则BD长的最大值为__________ .

