- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 三角函数
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- 三角函数的应用
- 三角恒等变换
- 解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)当
时,
恒成立,求实数
的取值范围;
(2)是否同时存在实数
和正整数
,使得函数
在
上恰有2019个零点
若存在,请求出所有符合条件的
和
的值;若不存在,请说明理由.

(1)当



(2)是否同时存在实数







将函数
的图像上所有点的横坐标缩短到原来的
倍(纵坐标不变),再将所得图像向左平移
个单位后得到的函数图像关于原点中心对称,则
( )




A.![]() | B.![]() | C.![]() | D.![]() |
平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的极坐标方程及曲线
的直角坐标方程;
(2)若
是直线
上一点,
是曲线
上一点,求
的最大值.







(1)求直线


(2)若




