- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 三角函数
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- 三角函数的应用
- 三角恒等变换
- 解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是一个近似扇形的鱼塘,其中
,弧
长为
(
).为方便投放饲料,欲在如图位置修建简易廊桥
,其中
,
.已知
时,
,则廊桥
的长度大约为( )












A.![]() | B.![]() |
C.![]() | D.![]() |
已知函数y=4cos2x-4

(1)求出函数的最小正周期;
(2)求出函数的最大值及其相对应的x值;
(3)求出函数的单调增区间;
(4)求出函数的对称轴.
要得到函数
的图象,只需将函数
的图象上所有的点( ).


A.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动![]() |
B.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动![]() |
C.横坐标缩短到原来的![]() ![]() |
D.横坐标缩短到原来的![]() ![]() |
已知函数
,其中
,
,
,
,且
的最小值为-2,
的图象的相邻两条对称轴之间的距离为
,
的图象过点
.
(1)求函数
的解析式和单调递增区间;
(2)若
函数
的最大值和最小值.










(1)求函数

(2)若


已知向量
,
,且函数
.
(1)若
,且
,求
的值;
(2)若将函数
的图像上的点的纵坐标不变,横坐标缩小为原来的
,再将所得图像向左平移
个单位,得到
的图像,求函数
在
的值域.



(1)若



(2)若将函数





