1.单选题- (共4题)
2.填空题- (共13题)
3.解答题- (共6题)
20.
已知抛物线
:
上横坐标为4的点到焦点的距离为5.

(1)求抛物线
的方程;
(2)设直线
与抛物线
交于两点
、
,且
,
是弦
中点,过
作平行于
轴的直线交抛物线
于点
,得到
,再分别过弦
、
的中点作平行于
轴的直线依次交抛物线
于点
、
,得到
和
,按此方法继续下去,解决下列问题:
①求证:
;
②计算
的面积
;
③根据
的面积
的计算结果,写出
、
的面积,请设计一种求抛物线
与线段
所围成封闭图形面积的方法,并求此封闭图形的面积.



(1)求抛物线

(2)设直线




















①求证:

②计算


③根据






21.
如图所示,已知点
,过点
作直线
、
与圆
:
和抛物线
:
都相切.

(1)求抛物线
的两切线的方程;
(2)设抛物线的焦点为
,过点
的直线与抛物线相交于
、
两点,与抛物线的准线交于点
(其中点
靠近点
),且
,求
与
的面积之比.









(1)求抛物线

(2)设抛物线的焦点为










试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(13道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:23