内蒙古杭锦后旗奋斗中学2018-2019学年高二下学期期中考试数学(理)试题

适用年级:高二
试卷号:616083

试卷类型:期中
试卷考试时间:2019/5/27

1.单选题(共12题)

1.
设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f ′(x)的图象可能是(  )
A.B.C.D.
2.
函数的导数是(   )
A.B.C.D.
3.
若函数在R上为减函数,则实数a的取值范围是(  )
A.B.C.D.
4.
设函数的导函数为,且,则下列不等式成立的是(  )
A.B.
C.D.
5.
若函数在区间内有最小值,则的取值范围是(   )
A.B.C.D.
6.
做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为元,侧面的材料每单位面积的价格为元,当造价最低时,锅炉的底面直径与高的比为(  )
A.B.C.D.
7.
某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是(   )
A.0.8B.0.75C.0.6D.0.45
8.
在一线性回归模型中,计算其相关指数R2=0.96,下面哪种说法不够妥当(  )
A.该线性回归方程的拟合效果较好
B.解释变量对于预报变量变化的贡献率约为96%
C.随机误差对预报变量的影响约占4%
D.有96%的样本点在回归直线上,但是没有100%的把握
9.
有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是(  )
A.0.72B.0.8C. D.0.9
10.
某校需要从5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一个参加活动,女生丙必须参加活动,则不同的选人方式有(  )
A.56种B.49种C.42种D.14种
11.
的展开式中,含x2的项的系数为   (  )
A.4B.6C.10D.12
12.
6个停车位置,有3辆汽车需要停放,若要使3个空位连在一起,则停放的方法种数为(  )
A.B.C.D.

2.填空题(共4题)

13.
已知曲线方程为,则曲线在处的切线方程为______.
14.
设(1+x)3+(1+x)4+…+(1+x)50=a0+a1·x+a2·x2+…+a50·x50,则a3等于_____.(用二项式系数作答)
15.
设随机变量服从正态分布,若,则等于_____.
16.
一道数学竞赛试题,甲解出它的概率为,乙解出它的概率为,丙解出它的概率为,由甲、乙、丙三人独立解答此题,只有1人解出的概率为_____.

3.解答题(共6题)

17.
已知函数.
(1)求函数的单调区间;
(2)若,求函数的值域.
18.
已知函数.
(1)若,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由;
(2)设函数,若至少存在一个,使得成立,求实数的取值范围.
19.
某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.
20.
假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5.5
6.5
7.0
 
(1)画出散点图;
(2)求关于的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: 
21.
按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.

质量指标值
[95,100)
[100,105)
[105,110)
[110,115)
[115,120)
[120,125]
频数
1
4
19
20
5
1
 
表1:甲套设备的样本频数分布表
(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?
(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:
 
甲套设备
乙套设备
合计
合格品
 
 
 
不合格品
 
 
 
合计
 
 
 
 
(3)根据表和图,对甲、乙两套设备的优劣进行比较.参考公式及数据:x2=
P(Х2≥k)
0.100
0.050
0.010
k
2.706
3.841
6.635
 
22.
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算均值;
(2)试从两位考生正确完成题数的均值及至少正确完成2题的概率分析比较两位考生的实验操作能力.
试卷分析
  • 【1】题量占比

    单选题:(12道)

    填空题:(4道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:22