刷题首页
题库
高中数学
题干
做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为
元,侧面的材料每单位面积的价格为
元,当造价最低时,锅炉的底面直径与高的比为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-10-11 09:08:41
答案(点此获取答案解析)
同类题1
某房地产商建有三栋楼宇
,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域
外建第四栋楼宇
,规划要求楼宇
对楼宇
,
的视角为
,如图所示,假设楼宇大小高度忽略不计.
(1)求四栋楼宇围成的四边形区域
面积的最大值;
(2)当楼宇
与楼宇
,
间距离相等时,拟在楼宇
,
间建休息亭
,在休息亭
和楼宇
,
间分别铺设鹅卵石路
和防腐木路
,如图,已知铺设鹅卵石路、防腐木路的单价分别为
,
(单位:元千米,
为常数).记
,求铺设此鹅卵石路和防腐木路的总费用的最小值.
同类题2
三棱锥O-ABC中,OA、OB、OC两两垂直,OC=2x,OA=x,OB=y,且x+y=3,则三棱锥O-ABC体积的最大值为()
A.4
B.8
C.
D.
同类题3
如图所示,直四棱柱
内接于半径为
的半球
,四边形
为正方形,则该四棱柱的体积最大时,
的长为()
A.
B.
C.
D.
同类题4
如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比
的最小值.
同类题5
为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OP交AB于M,cos∠POB=
,记矩形EFGH区域的面积为Sm
2
.
(1)设∠POF=θ(rad),将S表示成θ的函数;
(2)求矩形EFGH区域的面积S的最大值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题