1.单选题- (共4题)
2.填空题- (共12题)
3.解答题- (共5题)
17.
已知
,
且
,
且
,函数
.
(1)设
,
,若
是奇函数,求
的值;
(2)设
,
,判断函数
在
上的单调性并加以证明;
(3)设
,
,
,函数
的图象是否关于某垂直于
轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.






(1)设




(2)设




(3)设





19.
已知
是数列
的前
项和,对任意
,都有
;
(1)若
,求证:数列
是等差数列,并求此时数列
的通项公式;
(2)若
,求证:数列
是等比数列,并求此时数列
的通项公式;
(3)设
,若
,求实数
的取值范围.





(1)若



(2)若



(3)设



20.
如图,空间直角坐标系中,四棱锥
的底面是边长为
的正方形,且底面在
平面内,点
在
轴正半轴上,
平面
,侧棱
与底面所成角为45°;

(1)若
是顶点在原点,且过
、
两点的抛物线上的动点,试给出
与
满足的关系式;
(2)若
是棱
上的一个定点,它到平面
的距离为
(
),写出
、
两点之间的距离
,并求
的最小值;
(3)是否存在一个实数
(
),使得当
取得最小值时,异面直线
与
互相垂直?请说明理由;









(1)若





(2)若









(3)是否存在一个实数





试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(12道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21