刷题首页
题库
高中数学
题干
已知动圆
过定点
,且在
轴上截得的弦长为
,设该动圆圆心的轨迹为曲线
.
(1)求曲线
的方程;
(2)直线
过曲线
的焦点
,与曲线
交于
、
两点,且
,
都垂直于直线
,垂足分别为
,直线
与
轴的交点为
,求证
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-08 05:38:02
答案(点此获取答案解析)
同类题1
如图,
为椭圆
的下顶点.过
的直线
交抛物线
于
,
两点,
是
的中点.
(1)求证:点
的纵坐标是定值;
(2)过点
作与直线
倾斜角互补的直线
交椭圆于
,
两点.求
的值,使得
的面积最大.
同类题2
给出定理:在圆锥曲线中,
是抛物线
的一条弦,
是
的中点,过点
且平行于
轴的直线与抛物线的交点为
.若
两点纵坐标之差的绝对值
,则
的面积
,试运用上述定理求解以下各题:
(1)若
,
所在直线的方程为
,
是
的中点,过
且平行于
轴的直线与抛物线
的交点为
,求
;
(2)已知
是抛物线
的一条弦,
是
的中点,过点
且平行于
轴的直线与抛物线的交点为
,
分别为
和
的中点,过
且平行于
轴的直线与抛物线
分别交于点
,若
两点纵坐标之差的绝对值
,求
和
;
(3)请你在上述问题的启发下,设计一种方法求抛物线:
与弦
围成成的“弓形”的面积,并求出相应面积.
同类题3
已知抛物线
的方程为
,过点
(
为常数)作抛物线
的两条切线,切点分别为
,
.
(1)过焦点且在
轴上截距为
的直线
与抛物线
交于
,
两点,
,
两点在
轴上的射影分别为
,
,且
,求抛物线
的方程;
(2)设直线
,
的斜率分别为
,
.求证:
为定值.
同类题4
过抛物线
的焦点
的一条直线交抛物线于
,
两点,给出以下结论:
①
为定值;
②若经过点
和抛物线的顶点的直线交准线于点
,则
轴;
③存在这样的抛物线和直线
,使得
(
为坐标原点);
④若以点
,
为切点分别作抛物线的切线,则两切线交点的轨迹为抛物线的准线.
写出所有正确的结论的序号__________.
同类题5
已知点
到抛物线
准线的距离为2.
(Ⅰ)求
的方程及焦点
的坐标;
(Ⅱ)设点
关于原点
的对称点为点
,过点
作不经过点
的直线与
交于两点
,求直线
与
的斜率之积.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中的定值问题