刷题首页
题库
高中数学
题干
(本题满分14分)如图,O为坐标原点,点F为抛物线C
1
:
的焦点,且抛物线C
1
上点P处的切线与圆C
2
:
相切于点Q.
(Ⅰ)当直线PQ的方程为
时,求抛物线C
1
的方程;
(Ⅱ)当正数
变化时,记S
1
,S
2
分别为△FPQ,△FOQ的面积,求
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2015-07-15 04:55:14
答案(点此获取答案解析)
同类题1
已知抛物线
:
,焦点为
,直线
交抛物线
于
,
两点,
为
的中点,且
.
(1)求抛物线
的方程;
(2)若
,求
的最小值.
同类题2
已知抛物线
的顶点在原点,焦点在
轴上,且抛物线上有一点
到焦点的距离为6.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点,并说明理由.
同类题3
已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
求椭圆
和抛物线
的方程;
设点
P
为抛物线
准线上的任意一点,过点
P
作抛物线
的两条切线
PA
,
PB
,其中
A
,
B
为切点.
设直线
PA
,
PB
的斜率分别为
,
,求证:
为定值;
若直线
AB
交椭圆
于
C
,
D
两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
同类题4
已知抛物
:
,其焦点为
,抛物线上一点
到准线的距离4,且
.
(1)求此抛物线
的方程;
(2)过点
做直线
交抛物线
于
,
两点,求证:
.
同类题5
已知抛物线
的焦点为
,圆
与
轴的一个交点为
,圆
的圆心为
,
为等边三角形.
(1)求抛物线
的方程
(2)设圆
与抛物线
交于
、
两点,点
为抛物线
上介于
、
两点之间的一点,设抛物线
在点
处的切线与圆
交于
、
两点,在圆
上是否存在点
,使得直线
、
均为抛物线
的切线,若存在求
点坐标(用
、
表示);若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据焦点或准线写出抛物线的标准方程
抛物线中的三角形面积问题