刷题宝
  • 刷题首页
题库 高中数学

题干

设抛物线,点,过点的直线与交于(在轴上方)两点.
(Ⅰ)当时,求直线的方程;
(Ⅱ)在轴上是否存在点,使得,若存在,求点出坐标,若不存在,说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2019-03-11 04:16:55

答案(点此获取答案解析)

同类题1

斜率为的直线与抛物线交于两点,且的中点恰好在直线上.
(1)求的值;
(2)直线与圆交于两点,若,求直线的方程.

同类题2

已知抛物线:的焦点为,过点的直线与抛物线交于两点,且直线与圆交于两点.若,则直线的斜率为()
A.B.C.D.

同类题3

设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.

同类题4

抛物线上一点到焦点的距离为,直线交于两点.
(1)求的方程;
(2)若以为直径的圆过原点,求的方程.

同类题5

若,则称点在抛物线C:外.已知点在抛物线C:外,则直线与抛物线C的位置关系是()
A.相交B.相切C.相离D.不能确定
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 直线与圆锥曲线的位置关系
  • 直线与抛物线的位置关系
  • 判断直线与抛物线的位置关系
  • 求直线与抛物线的交点坐标
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)