刷题首页
题库
高中数学
题干
已知平面内的定点
到定直线
的距离等于
,动圆
过点
且与直线
相切,记圆心
的轨迹为曲线
.在曲线
上任取一点
,过
作
的垂线,垂足为
.
(1)求曲线
的轨迹方程;
(2)记点
到直线
的距离为
,且
,求
的取值范围;
(3)判断
的平分线所在的直线与曲线的交点个数,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-05 07:08:27
答案(点此获取答案解析)
同类题1
已知抛物线
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:
同类题2
已知点
,直线
,
为直角坐标平面上的动点,过动点
作的垂线,垂足为点
,且满足
.
(1)求动点
的轨迹
的方程;
(2)若直线
与(1)中的轨迹
相切于点
,
,且
与圆心为
的圆
,相交于
,
两点,当
的面积最大时,求点
的坐标.
同类题3
已知动圆过定点
,且在
轴上截得的弦长为
.
(1)求动圆圆心的轨迹
的方程;
(2)过点
斜率为
的直线交轨迹
于
,
两点,当
时,求
.
同类题4
已知动圆
与定圆
:
外切,且与
轴相切.
(1)求动圆圆心
的轨迹
的方程;
(2)过
作直线
与
在
轴右侧的部分相交于
,
两点,点
关于
轴的对称点为
.
(ⅰ)求直线
与
轴的交点
的坐标;
(ⅱ)若
,求
的内切圆方程.
同类题5
在平面直角坐标系
中,过点
的动圆恒与
轴相切,
为该圆的直径,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的任意直线
与曲线
交于点
,
为
的中点,过点
作
轴的平行线交曲线
于点
,
关于点
的对称点为
,除
以外,直线
与
是否有其它公共点?说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
求抛物线的轨迹方程
判断直线与抛物线的位置关系