刷题首页
题库
高中数学
题干
已知抛物线
上一点
到它的准线的距离为
.
(1)求
的值;
(2)在直线
上任意一点
作曲线
的切线,切点分别为
、
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-28 03:09:52
答案(点此获取答案解析)
同类题1
已知抛物线的焦点
在
轴上,抛物线上一点
到准线的距离是
,过点
的直线与抛物线交于
,
两点,过
,
两点分别作抛物线的切线,这两条切线的交点为
.
(1)求抛物线的标准方程;
(2)求
的值;
(3)求证:
是
和
的等比中项.
同类题2
已知抛物线
:
的焦点为
,点
为抛物线
上一点,且点
到焦点
的距离为4,过
作抛物线
的切线
(斜率不为0),切点为
.
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)求证:以
为直径的圆过点
.
同类题3
如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角.
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.
同类题4
设抛物线
(
)的焦点为
,准线为
,过焦点的直线分别交抛物线于
两点,分别过
作
的垂线,垂足为
.若
,且三角形
的面积为
,则
的值为( )
A.
B.
C.
D.
同类题5
已知抛物线
的顶点在原点,焦点在
轴上,且抛物线上有一点
到焦点
的距离为3 ,直线
与抛物线
交于
,
两点,
为坐标原点.
(1)求抛物线
的方程;
(2)求
的面积
.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
求抛物线的切线方程