刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,左、右焦点分别为
、
,
是
上一点,
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相较于不同两点
,
时,在线段
上取点
,且
满足
,证明点
总在某定直线上,并求出该定直线.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-09 02:56:01
答案(点此获取答案解析)
同类题1
设椭圆
的左右焦点分别为
,
,在椭圆
L
上的点
满足
,且
,
,
成等差数列.
(1)求椭圆
L
的方程;
(2)过点
A
作两条倾斜角互补的直线
,
,它们与椭圆
L
的另一个交点分别为
B
,
C
,试问直线
BC
的斜率是否是定值?若是,求出该斜率;若不是,请说明理由.
同类题2
与椭圆
有相同的焦点,且经过点
的椭圆的标准方程是( )
A.
B.
C.
D.
同类题3
已知
,
为椭圆
:
的左、右焦点,离心率为
,且椭圆
的上顶点到左、右顶点的距离之和为
.
(1)求椭圆
的标准方程;
(2)过点
的直线
交椭圆于
,
两点,若以
为直径的圆过
,求直线
的方程.
同类题4
中心在原点,焦点在
轴上的椭圆,下顶点
,且离心率
.
(
)求椭圆的标准方程.
(
)经过点
且斜率为
的直线
交椭圆于
,
两点.在
轴上是否存在定点
,使得
恒成立?若存在,求出点
坐标;若不存在,说明理由.
同类题5
设椭圆
的离心率是
,过点
的动直线
于椭圆相交于
两点,当直线
平行于
轴时,直线
被椭圆
截得弦长为
.
(Ⅰ)求
的方程;
(Ⅱ)在
上是否存在与点
不同的定点
,使得直线
和
的倾斜角互补?若存在,求
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定直线