刷题首页
题库
高中数学
题干
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-17 04:24:41
答案(点此获取答案解析)
同类题1
已知抛物线
C
:
x
2
=2
py
(
p
>0),直线
l
1
:
y
=
kx
+
t
与抛物线
C
交于
A
,
B
两点(
A
点在
B
点右侧),直线
l
2
:
y
=
kx
+
m
(
m
≠
t
)交抛物线
C
于
M
,
N
两点(
M
点在
N
点右侧),直线
AM
与直线
BN
交于点
E
,交点
E
的横坐标为2
k
,则抛物线
C
的方程为( )
A.
x
2
=
y
B.
x
2
=2
y
C.
x
2
=3
y
D.
x
2
=4
y
同类题2
己知椭圆
的离心率为
,
分别是椭圈
的左、右焦点,椭圆
的焦点
到双曲线
渐近线的距离为
.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,以线段
为直径的圆经过点
,且原点
到直线
的距离为
,求直线
的方程.
同类题3
对于曲线
所在的平面上的定点
,若存在以点
为顶点的角
,使得
对于曲线
上的任意两个不同的点
恒成立,则称角
为曲线
的“
点视角”,并称其中最小的“
点视角”为曲线
相对于点
的”
点确视角”.已知曲线
和圆
是
轴上一点
(1)对于坐标原点
,写出曲线
的“
点确视角”的大小;
(2)若
在曲线
上,求
的最小值;
(3)若曲线
和圆
的“
点确视角”相等,求
点坐标.
相关知识点
平面解析几何
圆锥曲线
根据a、b、c求椭圆标准方程
求椭圆中的弦长