刷题首页
题库
高中数学
题干
已知椭圆
过点
,离心率为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
两点,且
,设
分别是直线
的斜率,试探究
是否为定值,若是,求出该定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-17 02:58:32
答案(点此获取答案解析)
同类题1
已知动圆
与圆
:
相切,且与圆
:
相内切,记圆心
的轨迹为曲线
.设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
,
两个不同的点.
(Ⅰ)求曲线
的方程;
(Ⅱ)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记
的面积为
,
的面积为
,令
,求
的最大值.
同类题2
已知椭圆
的左、右顶点分别为
,左焦点为
,点
为椭圆
上任一点,若直线
与
的斜率之积为
,且椭圆
经过点
.
(1)求椭圆的方程;
(2)若
交直线
于
两点,过左焦点
作以
为直径的圆的切线.问切线长是否为定值,若是,请求出定值;若不是,请说明理由.
同类题3
已知椭圆
,离心率
,点
在椭圆上.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上一点,左顶点为
,上顶点为
,直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.
同类题4
已知动点
M
到定点
F
1
(-2,0)和
F
2
(2,0)的距离之和为
.
(1)求动点
M
轨迹
C
的方程;
(2)设
N
(0,2),过点
P
(-1,-2)作直线
l
,交椭圆
C
于不同于
N
的
A
,
B
两点,直线
NA
,
NB
的斜率分别为
k
1
,
k
2
,问
k
1
+
k
2
是否为定值?若是的求出这个值.
同类题5
设椭圆
的左、右焦点分别为
,左项点为
上顶点为
.已知
.
(1)求椭圆的离心率;
(2)设
为椭圆
上在第一象限内一点,射线
与椭圆
的另一个公共点为
,满足
,直线
交
轴于点,
的面积为
.
(
i
)求椭圆
的方程.
(
ii
)过点
作不与
轴垂直的直线
交椭圆
于
(异于点
)两点,试判断
的大小是否为定值,并说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题