刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别为
,离心率为
.设过点
的直线
与椭圆
相交于不同两点
,
周长为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点
,证明:当直线
变化时,总有TA与
的斜率之和为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 12:50:16
答案(点此获取答案解析)
同类题1
已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
同类题2
已知椭圆
的右顶点为
,上顶点为
,离心率
,
为坐标原点,圆
与直线
相切.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知四边形
内接于椭圆
.记直线
的斜率分别为
,试问
是否为定值?证明你的结论.
同类题3
已知椭圆
中心在原点,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
两点,求
的内切圆面积的最大值.
同类题4
已知抛物线
的准线过椭圆
的一个焦点,椭圆的长轴长是短轴长的2倍, 则该椭圆的方程为
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题