刷题首页
题库
高中数学
题干
已知椭圆
:
的左、右焦点为
,
,点
在椭圆
上,且
面积的最大值为
,周长为6.
(1)求椭圆
的方程,并求椭圆
的离心率;
(2)已知直线
:
与椭圆
交于不同的两点
,若在
轴上存在点
,使得
与
中点的连线与直线
垂直,求实数
的取值范围
上一题
下一题
0.99难度 解答题 更新时间:2019-10-24 10:09:59
答案(点此获取答案解析)
同类题1
已知椭圆
,
是其左右焦点,
为其左右顶点,
为其上下顶点,若
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
分别作
轴的垂线
,椭圆
的一条切线
,
与
交于二点,求证:
.
同类题2
设椭圆
:
(
)的右焦点为
,短轴的一个端点
到
的距离等于焦距.
(1)求椭圆
的标准方程;
(2)设
、
是四条直线
,
所围成的矩形在第一、第二象限的两个顶点,
是椭圆
上任意一点,若
,求证:
为定值;
(3)过点
的直线
与椭圆
交于不同的两点
、
,且满足△
与△
的面积的比值为
,求直线
的方程.
同类题3
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题4
已知椭圆
:
,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设
是圆
上任意一点,由
引椭圆
的两条切线
,
,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.
同类题5
如图,已知椭圆
的左、右焦点分别为
、
,点
为椭圆
上任意一点,
关于原点
的对称点为
,有
,且
的最大值
.
(1)求椭圆
的标准方程;
(2)若
是
关于
轴的对称点,设点
,连接
与椭圆
相交于点
,问直线
与
轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.
相关知识点
平面解析几何
平面解析几何
圆锥曲线
圆锥曲线
椭圆
椭圆