刷题首页
题库
高中数学
题干
已知
是抛物线
的焦点,恰好又是双曲线
的右焦点,双曲线
过点
,且其离心率为
.
(1)求抛物线
和双曲线
的标准方程;
(2)已知直线
过点
,且与抛物线
交于
,
两点,以
为直径作圆
,设圆
与
轴交于点
,
,求
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-28 10:41:00
答案(点此获取答案解析)
同类题1
已知椭圆
的一个焦点为
,离心率为
,
为椭圆
的左顶点,
,
为椭圆
上异于
的两个动点,直线
,
与直线
分别交于
,
两点.
(1)求椭圆
的方程;
(2)若
与
的面积之比为
,求
的坐标;
(3)设直线与
轴交于点
,若
,
,
三点共线,判断
与
的大小关系,并说明理由.
同类题2
已知
,若点
是抛物线
上任意一点,点
是圆
上任意一点,则
的最小值为( )
A.
B.
C.
D.
同类题3
已知椭圆
的离心率为
,过点
的椭圆
的两条切线相互垂直.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在椭圆
上是否存在这样的点
,过点
引抛物线
的两条切线
,切点分别为
,且直线
过点
?若存在,指出这样的点
有几个(不必求出点的坐标);若不存在,请说明理由.
同类题4
已知抛物线
:
,过点
的直线与抛物线相交于
,
两点,且
.
(1)求
的值;
(2)设动直线
:
与抛物线
相切于点
,点
是直线
上异于点
的一点,若以
为直径的圆恒过
轴上一定点
,求点
的横坐标
.
同类题5
设函数
由方程到
确定,对于函数
给出下列命题:
①对任意
,都有
恒成立:
②
,使得
且
同时成立;
③对于任意
恒成立;
④对任意,
,
都有
恒成立.其中正确的命题共有( )
A.1个
B.2个
C.3个
D.4个
相关知识点
平面解析几何
圆锥曲线
根据a、b、c求双曲线的标准方程
根据焦点或准线写出抛物线的标准方程