刷题首页
题库
高中数学
题干
已知
、
分别是椭圆
的左顶点、右焦点,点
为椭圆
上一动点,当
轴时,
.
(1)求椭圆
的离心率;
(2)若椭圆
存在点
,使得四边形
是平行四边形(点
在第一象限),求直线
与
的斜率之积;
(3)记圆
为椭圆
的“关联圆”. 若
,过点
作椭圆
的“关联圆”的两条切线,切点为
、
,直线
的横、纵截距分别为
、
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-16 06:07:27
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
是椭圆上一点.
(1)求椭圆的标准方程;
(2)过椭圆右焦点
的直线与椭圆交于
两点,
是直线
上任意一点.
证明:直线
的斜率成等差数列.
同类题2
已知椭圆中心在原点,焦点在
x
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
同类题3
已知椭圆
的中心在坐标原点,焦点在坐标轴上,焦距长为2,左准线为
:
.
(1)求椭圆
的方程及其离心率;
(2)若过点
的直线
交椭圆
于
,
两点,且
为线段
的中点,求直线
的方程;
(3)过椭圆
右准线
上任一点
引圆
:
的两条切线,切点分别为
,
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
同类题4
椭圆
的上顶点为
,点
在椭圆
上,
,
分别为
的左右焦点,
.
(1)求椭圆
的方程;
(2)点
M
在圆
上,且
M
在第一象限,过
M
作
的切线交椭圆于
,
两点,且
,
,
不共线,问:
的周长是否为定值?若是求出定值;若不是说明理由.
同类题5
已知动直线l与椭圆C:
交于
,
两个不同的点,O为坐标原点.
若直线l过点
,且原点到直线l的距离为
,求直线l的方程;
若
的面积
,求证:
和
均为定值;
椭圆C上是否存在三点D、E、G,使得
?若存在,判断
的形状;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题