刷题首页
题库
高中数学
题干
设椭圆方程
,F为椭圆右焦点,P为椭圆在短轴上的一个顶点,
的面积为6,(O为坐标原点);
(1)求椭圆方程;
(2)在椭圆上是否存在一点Q,使QF的中垂线过点O?若存在,求出Q点坐标;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2012-01-16 05:51:06
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,其右焦点
到直线
的距离为
.
(1)求椭圆
的方程;
(2)若过
作两条互相垂直的直线
,
是
与椭圆
的两个交点,
是
与椭圆
的两个交点,
分别是线段
的中点,试判断直线
是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由.
同类题2
已知直线
l
1
:y=
x,
l
2
:y=-
x,动点P,Q分别在
l
1
,
l
2
上移动,|PQ|=2
,N是线段PQ的中点,记点N的轨迹为曲线
A.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点M(0,1)分别作直线MA,MB交曲线C于A,B两点,设这两条直线的斜率分别为k
1
,k
2
,且k
1
+k
2
=2,证明:直线AB过定点.
同类题3
已知椭圆
的长轴长为4,离心率为
.
(I)求C的方程;
(II)设直线
交C于A,B两点,点A在第一象限,
轴,垂足为
M
, 连结
BM
并延长交
C
于点
N
.求证:点
A
在以
BN
为直径的圆上.
同类题4
如图,已知椭圆
,
为椭圆的左右顶点,焦点
到短轴端点的距离为2,且
,
为椭圆
上异于
的两点,直线
的斜率等于直线
斜率的2倍.
(1)求直线
与直线
的斜率乘积值;
(2)求证:直线
过定点,并求出该定点;
(3)求三角形
的面积
的最大值.
同类题5
已知椭圆
:
的左右焦点分别为
、
,左右顶点分别是
、
,长轴长为
,
是以原点为圆心,
为半径的圆的任一条直径,四边形
的面积最大值为
.
(1)求椭圆
的方程;
(2)不经过原点的直线
:
与椭圆交于
、
两点,
①若直线
与
的斜率分别为
,
,且
,求证:直线
过定点,并求出该定点的坐标;
②若直线
的斜率是直线
、
斜率的等比中项,求
面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题