刷题首页
题库
高中数学
题干
已知
,
为椭圆
:
的左、右焦点,点
在椭圆
上,且
面积的最大值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于
,
两点,
的面积为1,
(
,
),当点
在椭圆
上运动时,试问
是否为定值?若是定值,求出这个定值;若不是定值,求出
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-19 12:40:35
答案(点此获取答案解析)
同类题1
已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于
均在第一象限,
与
轴、
轴分别交于
、
两点,设直线
的斜率为
,直线
的斜率分别为
,且
(其中
为坐标原点).证明: 直线
的斜率为定值.
同类题2
已知椭圆
的离心率为
,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆
的方程;
(2)设点
为椭圆上位于第一象限内一动点,
分别为椭圆的左顶点和下顶点,直线
与
轴交于点
,直线
与轴交于点
,求证:四边形
的面积为定值.
同类题3
已知椭圆
的左、右焦点分别是
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
两个不同点,证明:直线
于
的交点在一条定直线上.
同类题4
已知椭圆
的焦距为2,离心率为
.
(1)求椭圆的方程;
(2)直线
经过椭圆的右焦点且不与坐标轴垂直,设直线
与椭圆交于
、
两点,
(
是坐标系的原点),证明:直线
与直线
的斜率之积为常数.
同类题5
已知椭圆
C
:
(
a
>
b
>0)的两个焦点分别为
F
1
,
F
2
,离心率为
,过
F
1
的直线
l
与椭圆
C
交于
M
,
N
两点,且△
MNF
2
的周长为8.
(1)求椭圆
C
的方程;
(2)若直线
y
=
kx
+
b
与椭圆
C
分别交于
A
,
B
两点,且
OA
⊥
OB
,试问点
O
到直线
AB
的距离是否为定值,证明你的结论.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题