刷题首页
题库
高中数学
题干
已知椭圆
:
(
)的上顶点到右顶点的距离为
,左焦点为
,过点
且斜率为
的直线
交椭圆于
,
两点.
(Ⅰ)求椭圆
的标准方程及
的取值范围;
(Ⅱ)在
轴上是否存在定点
,使
恒为定值?若存在,求出点
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-10 11:40:31
答案(点此获取答案解析)
同类题1
已知椭圆
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的长轴长是短轴长的
倍.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭园
交于
两个不同的点,若存在实数
,使得
,求
的取值范围,
同类题2
中心在原点,焦点在
x
轴上的一椭圆与一双曲线有共同的焦点
F
1
,
F
2
,且|
F
1
F
2
|=
,椭圆的长半轴与双曲线实半轴之差为4,椭圆与双曲线的离心率之比为3∶7.
(1)求这两曲线的方程;
(2)若
P
为这两曲线的一个交点,cos∠
F
1
PF
2
值.
同类题3
已知椭圆
的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由.
同类题4
如图,已知椭圆
的离心率为
,右准线方程为
,
、
分别是椭圆
的左、右顶点,过右焦点
且斜率为
的直线
与椭圆
相交于
,
两点.
(1)求椭圆
的标准方程.
(2)记
、
的面积分别为
、
,若
,求
的值;
(3)设线段
的中点为
,直线
与右准线相交于点
,记直线
、
、
的斜率分别为
、
、
,求
的值.
同类题5
已知在平面直角坐标系
中,椭圆
:
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过右焦点
作一条不与坐标轴平行的直线
,若
交椭圆
与
、
两点,点
关于原点
的对称点为
,求
的面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题