刷题首页
题库
高中数学
题干
(2018届天津市耀华中学高三上学期第三次月考)已知椭圆
的一个焦点在直线
上,且离心率
.
(1)求该椭圆的方程;
(2)若
与
是该椭圆上不同的两点,且线段
的中点
在直线
上,试证:
轴上存在定点
,对于所有满足条件的
与
,恒有
;
(3)在(2)的条件下,
能否为等腰直角三角形?并证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-10 07:53:07
答案(点此获取答案解析)
同类题1
已知圆
M
:
x
2
+(
y
﹣1)
2
=1,圆
N
:
x
2
+(
y
+1)
2
=1,直线
l
1
、
l
2
分别过圆心
M
、
N
,且
l
1
与圆
M
相交于
A
、
B
,
l
2
与圆
N
相交于
C
、
D
,
P
是椭圆
上的任意一动点,则
的最小值为( )
A.
B.
C.3
D.6
同类题2
已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.
同类题3
设曲线
是焦点在
轴上的椭圆,两个焦点分别是是
,
,且
,
是曲线上的任意一点,且点
到两个焦点距离之和为4.
(1)求
的标准方程;
(2)设
的左顶点为
,若直线
:
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.
同类题4
过椭圆
外一点
作一直线
l
交椭圆于
两点,又
Q
关于
x
轴对称点为
,连结
交
x
轴于点
B
.
(1)若
,求证:
;
(2)求证:点
B
为一定点
.
同类题5
在平面直角坐标系中,已知焦距为4的椭圆
的左、右顶点分别为
,椭圆C的右焦点为F,过
作一条垂直于x轴的直线与椭圆相交于
,若线段
的长为
。
(1)求椭圆C的方程;
(2)设
是直线
上的点,直线
与椭圆C分别交于点M、N,求证:直线MN必过x轴上的一定点,并求出此定点的坐标。
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题
椭圆中的定值问题