刷题首页
题库
高中数学
题干
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,过左焦点
且垂直于
轴的直线交椭圆
于
两点,且
.
(Ⅰ)求
的方程;
(Ⅱ)若直线
是圆
上的点
处的切线,点
是直线
上任一点,过点
作椭圆
的切线
,切点分别为
,设切线的斜率都存在.求证:直线
过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-02 11:40:22
答案(点此获取答案解析)
同类题1
已知椭圆
中心在原点,焦点为
,
,且离心率
.
(1)求椭圆
的标准方程;
(2)过
的直线
交椭圆
于
A
,
B
两点,求
的周长.
同类题2
已知椭圆
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过
作动直线
交椭圆
于
两点,
为平面上一点,直线
的斜率分别为
,且满足
,问
点是否在某定直线上运动,若存在,求出该直线方程;若不存在,请说明理由.
同类题3
已知椭圆
经过点
,离心率为
,左、右焦点分别为
.
(1)求椭圆的方程;
(2)若直线
与以
为直径的圆相切,求直线
的方程。
同类题4
已知椭圆
的焦点在
轴上,若其离心率为
,则
的值是( )
A.
B.
C.
D.
同类题5
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的长半轴长.
(1)求
,
的方程;
(2)设
与
轴的交点为M,过坐标原点O的直线
与
相交于点A,B,直线MA,MB分别与
相交与D,
A.
①证明:
;
②记△MAB,△MDE的面积分别是
.问:是否存在直线
,使得
=
?请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题