刷题首页
题库
高中数学
题干
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,过左焦点
且垂直于
轴的直线交椭圆
于
两点,且
.
(Ⅰ)求
的方程;
(Ⅱ)若直线
是圆
上的点
处的切线,点
是直线
上任一点,过点
作椭圆
的切线
,切点分别为
,设切线的斜率都存在.求证:直线
过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-02 11:40:22
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
上的点到右焦点
F
的最大距离为
,离心率为
.
求椭圆
C
的方程;
如图,过点
的动直线
l
交椭圆
C
于
M
,
N
两点,直线
l
的斜率为
,
A
为椭圆上的一点,直线
OA
的斜率为
,且
,
B
是线段
OA
延长线上一点,且
过原点
O
作以
B
为圆心,以
为半径的圆
B
的切线,切点为
令
,求
取值范围.
同类题2
已知椭圆
的长轴长为
,离心率
,过右焦点
的直线
交椭圆于
、
两点.
(
)求椭圆的方程.
(
)当直线
的斜率为
时,求
的面积.
同类题3
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的标准方程;
(2)若过点
且斜率为1的直线
交椭圆
于不同的两点
,
,求
(
为坐标原点)的面积.
同类题4
已知椭圆
经过点
,离心率为
,左、右焦点分别为
.
(1)求椭圆的方程;
(2)若直线
与以
为直径的圆相切,求直线
的方程。
同类题5
已知椭圆
:
两个焦点之间的距离为2,且其离心率为
.
(Ⅰ) 求椭圆
的标准方程;
(Ⅱ) 若
为椭圆
的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足
,求
外接圆的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题