刷题首页
题库
高中数学
题干
椭圆
:
的左,右焦应分别是
,
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为1.
(1)求椭圆
的方程;
(2)已知直线
:
与椭圆
切于点
,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
.证明:存在常数
,使得
,并求
的值;
(3)点
是椭圆
上除长轴端点外的任一点,连接
,
,设
后的角平分线
交
的长轴于点
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 05:09:37
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
,其离心率
,点P为椭圆上的一个动点,
面积的最大值为
.
(1)求椭圆的标准方程;
(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点
,
,求
的取值范围.
同类题2
已知椭圆
:
的离心率
,左顶点为
.过点
作直线
交椭圆
于另一点
,交
轴于点
,点
为坐标原点.
(1)求椭圆
的方程:
(2)已知
为
的中点,是否存在定点
,对任意的直线
,
恒成立?若存在,求出点
的坐标;若不存在说明理由;
(3)过
点作直线
的平行线与椭圆
相交,
为其中一个交点,求
的最大值.
同类题3
如图,设
为坐标原点,点
是椭圆
的右焦点,
上任意一点到该椭圆的两个焦点的距离之和为
.分别过
的两条直线
与
相交于点
(异于
两点).
(1)求椭圆
的方程:
(2)若
分别为直线
与
的斜率,求
的值:
(3)若
求证:直线
与
的斜率之和为定值,并将此命题加以推广。写出更一般的结论(不用证明).
同类题4
求适合下列条件的椭圆的标准方程.
(1)经过点
,
;
(2)短轴长为4,离心率为
.
同类题5
已知椭圆
右顶点与右焦点的距离为
,短轴长为
,
为坐标原点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆分别交于
,
两点,求
的面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题