刷题首页
题库
高中数学
题干
已知椭圆
C
:
的右焦点为
,离心率为
,直线
与椭圆
C
交于不同两点
,直线
分别交
轴于
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-08 11:21:04
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,且过点
.
(1)求椭圆E的方程;
(2)若过点
的任意直线与椭圆E相交于A,B两点,线段AB的中点为M,求证,恒有
.
同类题2
在平面直角坐标系
xoy
中,椭圆
C
的中心为原点,焦点
、
在
x
轴上,离心率为
,过
的直线
l
交
C
于
A
、
B
两点,且
的周长为16,那么
C
的方程为( )
A.
B.
C.
D.
同类题3
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
同类题4
已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的左、右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:
恒为定值.
同类题5
如图,在平面直角坐标系
中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
两点.若直线
斜率为
时,
.
(1)求椭圆
的标准方程;
(2)试问以
为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题