刷题首页
题库
高中数学
题干
已知椭圆
C
:
的右焦点为
,离心率为
,直线
与椭圆
C
交于不同两点
,直线
分别交
轴于
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-08 11:21:04
答案(点此获取答案解析)
同类题1
设椭圆
的短轴长为4,离心率为
.
(1)直线
与椭圆有公共点时,求实数
m
的取值范围;
(2)设点
是直线
被椭圆所截得的线段
的中点,求直线
的方程.
同类题2
已知椭圆
的离心率为
,焦距为
.斜率为
的直线
与椭圆
有两个不同的交点
、
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)设
,直线
与椭圆
的另一个交点为
,直线
与椭圆
的另一个交点为
.若
、
和点
共线,求
.
同类题3
如图,椭圆E:
的离心率是
,过点P(0,1)的动直线
与椭圆相交于A,B两点,当直线
平行与
轴时,直线
被椭圆E截得的线段长为
.
(1)求椭圆E的方程;
(2)在平面直角坐标系
中,是否存在与点P不同的定点Q,使得
恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
同类题4
已知椭圆
的长轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)过动点
的直线交
轴于点
,交椭圆
于点
,
(
在第一象限),且
是线段
的中点.过点
作
轴的垂线交椭圆
于另一点
,延长
交椭圆
于点
.
①设直线
、
的斜率分别为
,证明
为定值;
②求直线
斜率取最小值时,直线
的方程.
同类题5
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)过椭圆
左焦点的直线
与椭圆
交于
两点,直线
过坐标原点且直线
与
的斜率互为相反数,直线
与椭圆交于
两点且均不与点
重合,设直线
的斜率为
,直线
的斜率为
.证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题