刷题首页
题库
高中数学
题干
在平面直角坐标系
内,动点
到定点
的距离与
到定直线
的距离之比为
(1)求动点
的轨迹
的方程;
(2)若轨迹
上的动点
到定点
的距离的最小值为1,求
的值;
(3)设点
、
是轨迹
上两个动点,直线
、
与轨迹
的另一交点分别为
、
,且直线
、
的斜率之积等于
,问四边形
的面积
是否为定值?请说明理由
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 04:14:32
答案(点此获取答案解析)
同类题1
已知两点
A
(﹣2,0)、
B
(2,0),动点
P
满足
.
(1)求动点
P
的轨迹Ω的方程;
(2)若椭圆
上点(
x
0
,
y
0
)处的切线方程是
:
①过直线
l
:
x
=4上一点
M
引Ω的两条切线,切点分别是
P
、
Q
,求证:直线
PQ
恒过定点
N
;
②是否存在实数λ,使得|
PN
|+|
QN
|=λ|
PN
|•|
QN
|?若存在,求出λ的值;若不存在,说明理由.
同类题2
如图,点
为圆
:
上一动点,过点
分别作
轴,
轴的垂线,垂足分别为
,
,连接
延长至点
,使得
,点
的轨迹记为曲线
.
(1)求曲线
的方程;
(2)若点
,
分别位于
轴与
轴的正半轴上,直线
与曲线
相交于
,
两点,试问在曲线
上是否存在点
,使得四边形
为平行四边形,若存在,求出直线
方程;若不存在,说明理由.
同类题3
平面直角坐标系中,已知直线
,定点
,动点
到直线
的距离是到定点
的距离的2倍.
(1)求动点
的轨迹
的方程;
(2)若
为轨迹
上的点,以
为圆心,
长为半径作圆
,若过点
可作圆
的两条切线
(
,
为切点),求四边形
面积的最大值.
同类题4
已知圆
,圆
内一点
,动圆
经过点
且与圆
内切.
(1)求圆心
的轨迹
的方程.
(2)过点
且不与坐标轴垂直的直线交曲线
于
两点,线段
的垂直平分线与
轴交于点
,求点
横坐标的取值范围.
同类题5
已知点
,
是坐标轴上两点,动点
满足直线
与
的斜率之积为
(其中
为常数,且
).记
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)过点
斜率为
的直线与曲线
交于点
,点
在曲线
上,且
,若
,求
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中的定值问题