刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别为
、
,短轴的两个端点分别为
、
,且
为等边三角形.
(1)若椭圆长轴的长为4,求椭圆
的方程;
(2)如果在椭圆
上存在不同的两点
、
关于直线
对称,求实数
的取值范围;
(3)已知点
,椭圆
上两点
、
满足
,求点
横坐标的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-22 08:38:01
答案(点此获取答案解析)
同类题1
已知椭圆
:
的短轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
的左、右焦点分别为
、
,左、右顶点分别为
、
,点
、
为椭圆
上位于
轴上方的两点,且
,记直线
、
的斜率分别为
、
,若
,求直线
的方程.
同类题2
如图,已知椭圆
C
:
1(
a
>
b
>0)的离心率为
,短轴长为2,直线
l
与圆
O
:
x
2
+
y
2
相切,且与椭圆
C
相交于
M
、
N
两点.
(1)求椭圆
C
的方程;
(2)证明:
•
为定值.
同类题3
给定椭圆
,称圆心在原点
,半径为
的圆是椭圆
C
的“准圆”.若椭圆
C
的一个焦点为
,其短轴上的一个端点到F的距离为
.
(I)求椭圆
C
的方程和其“准圆”方程;
(II )点
P
是椭圆
C
的“准圆”上的一个动点,过点
P
作直线
,使得
与椭圆
C
都只有一个交点,且
分别交其“准圆”于点
M
,
N
.
(1)当
P
为“准圆”与
轴正半轴的交点时,求
的方程;
(2)求证:|
MN
|为定值.
同类题4
椭圆的两个焦点分别为
、
,且椭圆上一点到两个焦点的距离之和是20,则椭圆的方程为
A.
B.
C.
D.
同类题5
已知椭圆C:
,圆Q(x﹣2)
2
+(y﹣
)
2
=2的圆心Q在椭圆C上,点P(0,
)到椭圆C的右焦点的距离为
.
(1)求椭圆C的方程;
(2)过点P作互相垂直的两条直线l
1
.l
2
, 且l
1
交椭圆C于A,B两点,直线l
2
交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
讨论椭圆与直线的位置关系