刷题首页
题库
高中数学
题干
已知点
是抛物线
上一点,且
到
的焦点的距离为
.
(1)求抛物线
在点
处的切线方程;
(2)若
是
上一动点,且
不在直线
上,过
作直线
垂直于
轴且交
于点
,过
作
的垂线,垂足为
.证明:
为定值,并求该定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-04 04:04:04
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,定点
和支点
,以线段
为直径的圆内切于圆
.
(Ⅰ)求动点
轨迹曲线
的方程;
(Ⅱ)若直线
与曲线
的一个公共点为
,与
(
为坐标原点)平行的直线
与曲线
将于不同的两点
,
,直线
与直线
交于点
,试判断是否存在常数
使
恒成立,若存在求出常数
的值,若不存在请说明理由.
同类题2
已知椭圆
:
, 过点
的直线
:
与椭圆
交于
M
、
N
两点(
M
点在
N
点的上方),与
轴交于点
E
.
(1)当
且
时,求点
M
、
N
的坐标;
(2)当
时,设
,
,求证:
为定值,并求出该值;
(3)当
时,点
D
和点
F
关于坐标原点对称,若△
MNF
的内切圆面积等于
,求直线
的方程.
同类题3
已知
分别是椭圆
的左、右焦点,直线
与
交于
两点,
,且
.
(1)求
的方程;
(2)已知点
是
上的任意一点,不经过原点
的直线
与
交于
两点,直线
的斜率都存在,且
,求
的值.
同类题4
在平面直角坐标系
中,有两定点
,
和两动点
,且
,直线
与直线
交于点
,点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
为曲线
上的两点,且直线
过原点,
为曲线
上另一点,满足
,求证:
为定值.
同类题5
已知椭圆E:
的焦距为2
,一条准线方程为x=
,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.
(1)求椭圆E的标准方程;
(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;
(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题