刷题首页
题库
高中数学
题干
设曲线
(
为参数)与
轴的交点分别为
,点
是曲线
上的动点,且点
不在坐标轴上,则直线
与
的斜率之积为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-05-18 09:40:49
答案(点此获取答案解析)
同类题1
如图,已知椭圆
的长轴长为4,离心率为
,过点
的直线
交椭圆于
两点,点
关于
轴的对称点为
,直线
交
轴于
点.
(1)求椭圆方程;
(2)探究:
是否为常数?
同类题2
如图所示,椭圆
:
(
)的离心率为
,左焦点为
,右焦点为
,短轴两个端点
、
,与
轴不垂直的直线
与椭圆
交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.
(1)求椭圆
的方程;
(2)求证直线
与
轴相交于定点,并求出定点坐标;
(3)当弦
的中点
落在
内(包括边界)时,求直线
的斜率的取值.
同类题3
已知椭圆
:
的左、右焦点分别为
,
,点
也为抛物线
:
的焦点.
(1)若
,
为椭圆
上两点,且线段
的中点为
,求直线
的斜率;
(2)若过椭圆
的右焦点
作两条互相垂直的直线分别交椭圆于
,
和
,
,设线段
,
的长分别为
,
,证明
是定值.
同类题4
已知椭圆
过点
,直线
与椭圆
相交于
两点(异于点
).当直线
经过原点时,直线
斜率之积为
.
(1)求椭圆
的方程;
(2)若直线
斜率之积为
,求
的最小值.
同类题5
已知椭圆
的左、右焦点分别为
,离心率为
,直线
与椭圆
C
交于
A
,
B
两点,且
.
(1)求椭圆
C
的方程.
(2)不经过点
的直线
被圆
截得的弦长与椭圆
C
的长轴长相等,且直线
与椭圆
C
交于
D
,
E
两点,试判断
的周长是否为定值?若是,求出定值;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题