刷题首页
题库
高中数学
题干
在平面直角坐标系
中,定点
和支点
,以线段
为直径的圆内切于圆
.
(Ⅰ)求动点
轨迹曲线
的方程;
(Ⅱ)若直线
与曲线
的一个公共点为
,与
(
为坐标原点)平行的直线
与曲线
将于不同的两点
,
,直线
与直线
交于点
,试判断是否存在常数
使
恒成立,若存在求出常数
的值,若不存在请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-18 07:39:55
答案(点此获取答案解析)
同类题1
平面直角坐标系中,已知直线
,定点
,动点
到直线
的距离是到定点
的距离的2倍;
(1)求动点
的轨迹
的方程;
(2)若
为轨迹
上的动点,直线
过点
且与轨迹
只有一个公共点,求证:此时点
和点
到直线
的距离之积为定值;
同类题2
已知两点
,直线
和直线
相交于点
,且它们的斜率之积是
(1)求动点
的轨迹方程;
(2)求
最大值时的正切值.
同类题3
如图,已知圆
,点
是圆
内一个定点,
是圆
上任意-一点,线段
的垂直平分线
和半径
相交于点
,连接
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
、
是曲线
上关于原点对称的两个点,点
是曲线
.上任意-一点(不同于点
、
),当直线
、
的斜率都存在时,记它们的斜率分别为
、
,求证:
的为定值.
同类题4
在平面直角坐标系中,动点
分别与两个定点
,
的连线的斜率之积为
.
(1)求动点
的轨迹
的方程;
(2)设过点
的直线与轨迹
交于
,
两点,判断直线
与以线段
为直径的圆的位置关系,并说明理由.
同类题5
已知动圆
在圆
:
外部且与圆
相切,同时还在圆
:
内部与圆
相切.
(1)求动圆圆心
的轨迹方程;
(2)记(1)中求出的轨迹为
,
与
轴的两个交点分别为
、
,
是
上异于
、
的动点,又直线
与
轴交于点
,直线
、
分别交直线
于
、
两点,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中的定值问题