刷题首页
题库
高中数学
题干
已知平面上动点
到点
的距离与到直线
的距离之比为
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设
是曲线
上的动点,直线
的方程为
.
①设直线
与圆
交于不同两点
,
,求
的取值范围;
②求与动直线
恒相切的定椭圆
的方程;并探究:若
是曲线
:
上的动点,是否存在直线
:
恒相切的定曲线
?若存在,直接写出曲线
的方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-10 12:11:31
答案(点此获取答案解析)
同类题1
已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于
均在第一象限,
与
轴、
轴分别交于
、
两点,设直线
的斜率为
,直线
的斜率分别为
,且
(其中
为坐标原点).证明: 直线
的斜率为定值.
同类题2
已知椭圆
的离心率为
,
,
为椭圆
的左、右焦点,
为椭圆
上的任意一点,
的面积的最大值为1,
、
为椭圆
上任意两个关于
轴对称的点,直线
与
轴的交点为
,直线
交椭圆
于另一点
.
(1)求椭圆
的标准方程;
(2)求证:直线
过定点.
同类题3
已知
是椭圆
(
)的左顶点,左焦点
是线段
的中点,抛物线
的准线恰好过点
.
(1)求椭圆的方程;
(2)如图所示,过点
作斜率为
的直线
交椭圆于点
,交
轴于点
,若
为线段
的中点,过
作与直线
垂直的直线
,证明对于任意的
(
),直线
过定点,并求出此定点坐标.
同类题4
已知椭圆
:
经过点
,离心率为
.
(1)求椭圆的方程;
(2)过坐标原点作两条直线
,
,直线
交椭圆于
,
,直线
交椭圆于
,
,且
,直线
,
的斜率分别为
,
,求证:
为定值.
同类题5
已知抛物线
:
,直线
:
.
(1)若直线
与抛物线
相切,求直线
的方程;
(2)设
,直线
与抛物线
交于不同的两点
,
,若存在点
,满足
,且线段
与
互相平分(
为原点),求
的取值范围.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值