刷题首页
题库
高中数学
题干
在平面直角坐标系
中,抛物线
,三点
,
,
中仅有一个点在抛物线
上.
(Ⅰ)求
的方程;
(Ⅱ)设直线
不经过
点且与
相交于
两点.若直线
与
的斜率之和为
,证明:
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-02 07:55:43
答案(点此获取答案解析)
同类题1
已知椭圆
的中心在原点,对称轴为坐标轴,椭圆
与直线
相切于点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆相交于
、
两点(
,
不是长轴端点),且以
为直径的圆过椭圆
在
轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.
同类题2
已知椭圆
的两个焦点为
,其短轴长是
,原点
到过点
和
两点的直线的距离为
.
(1)求椭圆
的方程;
(2)若点
是定直线
上的两个动点,且
,证明:以
为直径的圆过定点,并求
定点的坐标.
同类题3
已知椭圆
的一个焦点与抛物线
的焦点相同,A为椭圆C的右顶点,以A为圆心的圆与直线
相交于P,
两点,且
(Ⅰ)求椭圆C的标准方程和圆A的方程;
(Ⅱ)不过原点的直线
与椭圆C交于M、N两点,已知OM,直线
,ON的斜率
成等比数列,记以OM、ON为直径的圆的面积分别为S
1
、S
2
,试探究
的值是否为定值,若是,求出此值;若不是,说明理由.
同类题4
已知圆
和定点
,其中点
是该圆的圆心,
是圆
上任意一点,线段
的垂直平分线交
于点
,设动点
的轨迹为
.
(1)求动点
的轨迹方程
;
(2)设曲线
与
轴交于
两点,点
是曲线
上异于
的任意一点,记直线
,
的斜率分别为
,
.证明:
是定值;
(3)设点
是曲线
上另一个异于
的点,且直线
与
的斜率满足
,试探究:直线
是否经过定点?如果是,求出该定点,如果不是,请说明理由.
同类题5
已知椭圆
,点
在椭圆
上,椭圆
的离心率是
.
(1)求椭圆
的标准方程;
(2)设点
为椭圆长轴的左端点,
为椭圆上异于椭圆
长轴端点的两点,记直线
斜率分别为
,若
,请判断直线
是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题