刷题首页
题库
高中数学
题干
已知椭圆
的中心在原点,对称轴为坐标轴,椭圆
与直线
相切于点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆相交于
、
两点(
,
不是长轴端点),且以
为直径的圆过椭圆
在
轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-04 06:56:01
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率是
,且椭圆经过点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与圆
相切:
(ⅰ)求圆
的标准方程;
(ⅱ)若直线
过定点
,与椭圆
交于不同的两点
,与圆
交于不同的两点
,求
的取值范围.
同类题2
如图所示,A,B分别是椭圆C:
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.
同类题3
已知椭圆
C
的中心为坐标原点,焦点在坐标轴上,且经过点
M
(4
,
1),
N
(2
,
2).
(1)求椭圆
C
的方程;
(2)若斜率为1的直线与椭圆
C
交于不同的两点,且点
M
到直线
l
的距离为
,求直线
l
的方程.
同类题4
已知椭圆
:
经过
,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)设斜率存在的直线
与椭圆
交于
,
两点,
为坐标原点,
,且
与圆心为
的定圆
相切,求圆
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的直线过定点问题