刷题首页
题库
高中数学
题干
已知椭圆
的中心在原点,对称轴为坐标轴,椭圆
与直线
相切于点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆相交于
、
两点(
,
不是长轴端点),且以
为直径的圆过椭圆
在
轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-04 06:56:01
答案(点此获取答案解析)
同类题1
如图,已知椭圆
:
,左顶点为
,经过点
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
(1)求椭圆
的方程;
(2)已知
为
的中点,
,证明:对于任意的
都有
恒成立;
(3)若过点
作直线
的平行线交椭圆
于点
,求
的最小值.
同类题2
已知离心率为
的椭圆
过点
作两条互相垂直的直线,分别交椭圆于
两点.
(1)求椭圆
方程;
(2)求证:直线
过定点,并求出此定点的坐标.
同类题3
已知
是焦距为
的椭圆
的右顶点,点
,直线
交椭圆
于点
,
为线段
的中点.
(1)求椭圆
的方程;
(2)设过点
且斜率为
的直线
与椭圆
交于
,
两点,若
,求直线
的斜率
.
同类题4
已知椭圆
上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,
,
三点共线,求
的值.
同类题5
已知椭圆
(
)的离心率是
,其左、右焦点分别为
,短轴顶点分别为
,如图所示,
的面积为1.
(1)求椭圆
的标准方程;
(2)过点
且斜率为
的直线
交椭圆
于
两点(异于
点),证明:直线
和
的斜率和为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的直线过定点问题