刷题首页
题库
高中数学
题干
已知抛物线
与抛物线W相交于A、B、C、D四点,AB//CD,
,AD在y轴右侧。
(1)求k的取值范围;
(2)证明:直线AC与BD相交于定点E,并求出定点E的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-18 07:17:48
答案(点此获取答案解析)
同类题1
已知圆
M
:
,圆
N
:
,动圆
P
与圆
M
外切并且与圆
N
内切,圆心
P
轨迹为曲线
C
.
求曲线
C
的方程;
若
A
、
B
是曲线
C
上关于
x
轴对称的两点,点
,直线
DB
交曲线
C
于另一点
E
,求证:直线
AE
过定点,并求该定点的坐标.
同类题2
已知
的两个顶点
的坐标分别是
,
,且直线
的斜率之积是
.
(1)是否存在定点
,使得
为定值?
(2)设点
的轨迹为
,点
是
上互异的三点,且
关于
轴对称,
.求证:直线
恒过定点.
同类题3
如图,已知抛物线
,其焦点到准线的距离为2,圆
,直线
与圆和抛物线自左至右顺次交于四点
、
、
、
,
(1)若线段
、
、
的长按此顺序构成一个等差数列,求正数
的值;
(2)若直线
过抛物线焦点且垂直于直线
,直线
与抛物线交于点
、
,设
、
的中点分别为
、
,求证:直线
过定点.
同类题4
已知椭圆
的左右焦点分别为
,
,离心率为
.若点
为椭圆上一动点,
的内切圆面积的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作斜率为的动直线交椭圆于
两点,
的中点为
,在
轴上是否存在定点
,使得对于任意
值均有
,若存在,求出点
的坐标,若不存在,说明理由.
同类题5
在圆
上任取一点
,过点
作
轴的垂线段
,
为垂足.
,当点
在圆上运动时,
(1)求
点的轨迹
的方程;
(2) 若
,直线
交曲线
于
、
两点(点
、
与点
不重合),且满足
.
为坐标原点,点
满足
,证明直线
过定点,并求直线
的斜率的取值范围.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题
椭圆中的定值问题