刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,左、右焦点分别是
、
以
为圆心、以3为半径的圆与以
为圆心、以1为半径的圆相交,交点在椭圆
上.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,点
是椭圆
的右顶点
直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-17 09:09:00
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率
,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB倾斜角分别为
,则
.
同类题2
已知椭圆
(
)的离心率为
,左、右焦点分别为
、
,点
在椭圆
上,且
,
的面积为
.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
相交于
,
两点,点
,记直线
,
的斜率分别为
,
,当
最大时,求直线
的方程.
同类题3
在平面直角坐标系
xOy
中,已知椭圆
C
:
=1(
a
>
b
>0)的离心率为
,且过点
,点
P
在第四象限,
A
为左顶点,
B
为上顶点,
PA
交
y
轴于点
C
,
PB
交
x
轴于点
D
.
(1) 求椭圆
C
的标准方程;
(2) 求△
PCD
面积的最大值.
同类题4
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
同类题5
设椭圆
过点
,离心率为
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
,证明:点
的轨迹与
无关.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定点、定值