刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,左、右焦点分别是
、
以
为圆心、以3为半径的圆与以
为圆心、以1为半径的圆相交,交点在椭圆
上.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,点
是椭圆
的右顶点
直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-17 09:09:00
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,则实数
等于( )
A.2
B.2或
C.2或6
D.2或8.
同类题2
已知椭圆
的离心率为
,
,
,
分别为椭圆
的上、下顶点,点
.
(1)求椭圆
的方程;
(2)若直线
,
与椭圆
的另一交点分别为
,
,证明:直线
过定点.
同类题3
在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点),点
在椭圆
上,且
,直线
与
轴
轴分别交于
两点.
①设直线
斜率分别为
,证明存在常数
使得
,并求出
的值;
②求
面积的最大值.
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线
相切.
(1)求
与
;
(2)设该椭圆的左、右焦点分别为
和
,直线
过
且与
轴垂直,动直线
与
轴垂直,
交
与点
.求线段
垂直平分线与
的交点
的轨迹方程,并指明曲线类型.
同类题5
已知椭圆
的离心率为
.双曲线
的渐近线与椭圆
有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆
的方程为
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定点、定值