刷题首页
题库
高中数学
题干
已知椭圆
过点
,焦距长
,过点
的直线
交椭圆
于
,
两点.
(1)求椭圆
的方程;
(2)在
轴上是否存在一点
,使得
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-24 01:09:32
答案(点此获取答案解析)
同类题1
如图,
,
是离心率为
的椭圆的左、右顶点,
,
是该椭圆的左、右焦点,
,
是直线
上两个动点,连接
和
,它们分别与椭圆交于点
,
两点,且线段
恰好过椭圆的左焦点
.当
时,点
恰为线段
的中点.
(1)求椭圆的方程;
(Ⅱ)判断以
为直径的圆与直线
位置关系,并加以证明.
同类题2
已知椭圆
的右焦点为
,
为短轴的一个端点且
(其中
为坐标原点).
(1)求椭圆的方程;
(2)若
、
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
、
的交点,若存在,求出点
的坐标;若不存在,说明理由.
同类题3
如图,在平面直角坐标系
中,椭圆
:
的离心率为
,焦点到相应准线的距离为
,
,
分别为椭圆的左顶点和下顶点,
为椭圆
上位于第一象限内的一点,
交
轴于点
,
交
轴于点
.
(1)求椭圆
的标准方程;
(2)若
,求
的值;
(3)求证:四边形
的面积为定值.
同类题4
已知椭圆
的离心率为
,其右焦点
到直线
的距离为
.
(1)求椭圆
的方程;
(2)若过
作两条互相垂直的直线
,
是
与椭圆
的两个交点,
是
与椭圆
的两个交点,
分别是线段
的中点,试判断直线
是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题