刷题首页
题库
高中数学
题干
以椭圆
的离心率为
,以其四个顶点为顶点的四边形的面积等于
.
1
求椭圆
的标准方程;
2
过原点且斜率不为0的直线
与椭圆
交于
两点,
是椭圆
的右顶点,直线
分别与
轴交于点
,问:以
为直径的圆是否恒过
轴上的定点?若恒过
轴上的定点,请求出该定点的坐标;若不恒过
轴上的定点,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-18 02:48:04
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,焦距为
,与抛物线
有公共焦点
.
(1)求椭圆
C
1
与抛物线
的方程;
(2)已知直线
是圆
的一条切线,与椭圆
C
1
交于
两点,若直线
斜率存在且不为
,在椭圆
C
1
上存在点
,使
,其中
为坐标原点,求实数
λ
的取值范围.
同类题2
已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于
,
两点,若直线
、
的斜率分别为
、
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.
同类题3
在平面直角坐标系
中,已知椭圆
:
的焦距为2,且过点
.
(1)求椭圆
的方程;
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
,
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程:若不存在,说明理由.
同类题4
已知离心率为
的椭圆
过点
.
(1)求椭圆
的方程;
(2)过点
作斜率为
直线
与椭圆相交于
两点,求
的长.
同类题5
已知椭圆C:
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当
最小时,求点T的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题