刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,
为椭圆的左、右焦点,过右焦点
的直线与椭圆交于
两点,且
的周长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点A是第一象限内椭圆上一点,且在
轴上的正投影为右焦点
,过点
作直线
分别交椭圆于
两点,当直线
的倾斜角互补时,试问:直线
的斜率是否为定值;若是,请求出其定值;否则,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-25 08:03:30
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
的离心率
,右焦点到左顶点的距离为
.
(1)求椭圆
C
的标准方程;
(2)若直线
与椭圆
C
交于
A
、
B
两点,且以弦
AB
为直径的圆过椭圆
C
的右焦点
F
,求直线
的方程.
同类题2
已知椭圆
的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,
为坐标原点.
(1)求椭圆
的方程;
(2)过椭圆的右焦点
作直线
,与椭圆相交于
,
两点,求
面积的最大值,并求此时直线
的方程.
同类题3
已知圆
,椭圆
(
)的短轴长等于圆
半径的
倍,
的离心率为
.
(1)求
的方程;
(2)若直线
与
交于
两点,且与圆
相切,证明:
.
同类题4
已知焦距为2
的椭圆
:
的右顶点为
,直线
与椭圆
交于
、
两点(
在
的左边),
在
轴上的射影为
,且四边形
是平行四边形.
(1)求椭圆
的方程;
(2)斜率为
的直线
与椭圆
交于两个不同的点
,
.
(
i
)若直线
过原点且与坐标轴不重合,
是直线
上一点,且
是以
为直角顶点的等腰直角三角形,求
的值;
(
ii
)若
是椭圆的左顶点,
是直线
上一点,且
,点
是
轴上异于点
的点,且以
为直径的圆恒过直线
和
的交点,求证:点
是定点.
同类题5
已知椭圆
的左焦点为
F
,短轴的两个端点分别为
A
,
B
,且
,
为等边三角形.
(1)求椭圆
C
的方程;
(2)如图,点
M
在椭圆
C
上且位于第一象限内,它关于坐标原点
O
的对称点为
N
;过点
M
作
x
轴的垂线,垂足为
H
,直线
与椭圆
C
交于另一点
J
,若
,试求以线段
为直径的圆的方程;
(3)已知
是过点
A
的两条互相垂直的直线,直线
与圆
相交于
P
,
Q
两点,直线
与椭圆
C
交于另一点
R
,求
面积最大值时,直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题