刷题首页
题库
高中数学
题干
已知椭圆
的中心为原点
,焦点在
轴上,
上的点与
的两个焦点构成的三角形面积的最大值为
,直线
交椭圆于
于
两点.设
为线段
的中点,若直线
的斜率等于
,则椭圆
的方程为__________.
上一题
下一题
0.99难度 填空题 更新时间:2017-05-31 05:27:09
答案(点此获取答案解析)
同类题1
已知椭圆C:
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当
最小时,求点T的坐标.
同类题2
已知焦点在
x
轴上且长轴长为4的椭圆
C
过点
T
(1,1),记
l
为圆
O
:
x
2
+
y
2
=1的切线
(1)求椭圆
C
的方程;
(2)若
l
与椭圆
C
交于
A
、
B
两点,求证:∠
AOB
为定值.
同类题3
如图,已知过点D(0,-2)作抛物线C
1
:
=2py(p>0)的切线
l
,切点A在第二象限.
(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为
的椭圆
(a>b>0)恰好经过点A,设直线
l
交椭圆的另一点为B,记直线
l
,OA,OB的斜率分别为k,k
1
,k
2
,若k
1
+2k
2
=4k,求椭圆方程.
同类题4
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
同类题5
在平面直角坐标系
中,椭圆
的上顶点为A,左、右焦点分别为
,
,直线
的斜率为
,点
在椭圆E上,其中P是椭圆上一动点,Q点坐标为
.
(1)求椭圆E的标准方程;
(2)作直线l与x轴垂直,交椭圆于
两点(
两点均不与P点重合),直线
,
与x轴分别交于点
.求
的最小值及取得最小值时点P的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆的中点弦