刷题首页
题库
高中数学
题干
已知椭圆
的左焦点为
,右顶点为
,上顶点为
,
,
(
为坐标原点).
(1)求椭圆
的方程;
(2)定义:曲线
在点
处的切线方程为
.若抛物线
上存在点
(不与原点重合)处的切线交椭圆于
、
两点,线段
的中点为
.直线
与过点
且平行于
轴的直线的交点为
,证明:点
必在定直线上.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-02 05:09:50
答案(点此获取答案解析)
同类题1
经过两点
、
的椭圆的标准方程为__________.
同类题2
已知椭圆
(
),
为其左右焦点,
为其上下顶点,已知椭圆过点
,且四边形
的面积为2.
(1)求椭圆
的方程;
(2)设过定点
的直线
与椭圆
相交于
两点,若
,当
时,求
面积
的取值范围.
同类题3
已知椭圆
的中心在坐标原点,焦点在
轴上,离心率为
,椭圆
上的点到焦点距离的最大值为
.
(1)求椭圆
的标准方程;
(2)斜率为
的直线
与椭圆
交于不同的两点
,且线段
的中垂线交
轴于点
,求点
横坐标的取值范围.
同类题4
已知椭圆
C
:
的离心率
,右焦点到左顶点的距离为
.
(1)求椭圆
C
的标准方程;
(2)若直线
与椭圆
C
交于
A
、
B
两点,且以弦
AB
为直径的圆过椭圆
C
的右焦点
F
,求直线
的方程.
同类题5
已知椭圆
:
(
)的上顶点到右顶点的距离为
,左焦点为
,过点
且斜率为
的直线
交椭圆于
,
两点.
(Ⅰ)求椭圆
的标准方程及
的取值范围;
(Ⅱ)在
轴上是否存在定点
,使
恒为定值?若存在,求出点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
判断直线与抛物线的位置关系