刷题首页
题库
高中数学
题干
已知椭圆
的左焦点为
,右顶点为
,上顶点为
,
,
(
为坐标原点).
(1)求椭圆
的方程;
(2)定义:曲线
在点
处的切线方程为
.若抛物线
上存在点
(不与原点重合)处的切线交椭圆于
、
两点,线段
的中点为
.直线
与过点
且平行于
轴的直线的交点为
,证明:点
必在定直线上.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-02 05:09:50
答案(点此获取答案解析)
同类题1
已知椭圆
:
(
)的左、右焦点分别为
,过点
作直线
与椭圆
交于
两点.
(1)已知
,椭圆
的离心率为
,直线
交直线
于点
,求
的周长及
的面积;
(2)当
且点
在第一象限时,直线
交
轴于点
,
,证明:点
在定直线上.
同类题2
已知椭圆
的中心在坐标原点,长轴在
x
轴上,长轴长是短轴长的2倍,两焦点分别为
和
,椭圆
上一点到
和
的距离之和为12.圆
的圆心为
.
(1)求
的面积;
(2)若椭圆上所有点都在一个圆内,则称圆包围这个椭圆.问:是否存在实数
k
使得圆
包围椭圆
?请说明理由.
同类题3
已知椭圆
C
的中心在原点,焦点在
x
轴上,且长轴长为12,离心率为
.
(1)求椭圆
C
的标准方程;
(2)已知双曲线
E
过点
,且双曲线
E
的焦点与椭圆
C
的焦点重合,求双曲线
E
的标准方程.
同类题4
已知椭圆
过点
.
(Ⅰ)求椭圆
的方程,并求其离心率;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),直线
关于
的对称直线
与椭圆交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.
同类题5
已知椭圆
,右焦点为
,动直线
与圆
相切于点
,与椭圆交于
、
两点,其中点
在
轴右侧.
(1)若直线
过点
,求椭圆方程;
(2)求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
判断直线与抛物线的位置关系